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Abstract
A concise and general formula is introduced to obtain ab initio pair potentials
between atoms across a metal–ceramic interface by inversion of the adhesive
energies of the interface. Derivation of interfacial potentials �Ag−Mg and �Ag−O

from ab initio adhesive energies is performed by applying the formula to the
Ag/MgO(001) interface. Transferability of these potentials at Ag/MgO(100),
Ag/MgO(110) and Ag/MgO(111) interfaces is discussed.

1. Introduction

Metal–ceramic interfaces have attracted considerable attention in both experimental and
theoretical research due to their extensive applications to catalytic converters, field effect
transistors, anticorrosion coatings and composite materials. Experimentally, advanced
technologies such as grazing incidence x-ray scattering (GIXS) [1–3] and high resolution
transmission electron microscopy (HRTEM) [4–8] have been applied to structure observation
of atomistic scale, and many features of different interfaces have been revealed. However,
there are still a lot of problems remaining for the measurement and characterization of complex
interfaces. In addition, no current theoretical method can provide a complete description of
interface configurations since so many possible metastable structures exist for a real interface
system. From this point of view, a reliable and efficient computational method is really
necessary for research on interface.

Two types of computational approach are normally adopted for theoretical interface
studies: ab initio calculation [9–13] and atomistic simulation [14–17]. The ab initio approach
is reliable but very time-consuming. It can be used only for a small model system with several
hundreds of atoms. The atomistic simulation based on interatomic potentials is efficient. It
can be applied to a large system with thousands of atoms, provided interatomic potentials can
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be obtained in a systematic and reliable way. Therefore, a valid way of extracting reliable
interatomic potentials is of great help to interface research.

Many methods have been developed for the derivation of atomic potentials for bulk
materials such as the shell model, embedded-atom model, and environment dependent
potentials [18–20], etc. For interfaces, due to the complicated arrangement of atoms at
interfaces, few methods have been proposed to obtain reliable potentials. Some interesting
works along this line for metal–ceramic interfaces are the discrete classical model (DCM) from
Duffy [15], Finnis [14] and Purton et al [16, 17], and the ab initio approach from Endou [21]
and Yao [22]. In addition, the Green function method has been applied in the investigation of
interfaces by Moliner [23] and Quintanar [24] through tight binding studies. The DCM cannot
reproduce the adhesive energies very well, and Yao’s iteration method is a little too complex
for calculation and analysis, since too many infinite summations are involved.

In this paper, we introduce a method to obtain interatomic pair potentials between atoms
across an interface by inversion of the ab initio adhesive energy curves of the interface. The
method is based on a number theory, called the Mobius inversion method, proposed by one of
the authors in the 1990s [25, 26]. It has been applied to obtain reliable interatomic potentials
for many bulk materials successfully, such as ion crystals [27], rare earth compounds [28] and
semiconductors [29], and is further developed to obtain interatomic potentials for application
to interfaces. As shown later, the inverse technique used for the interfacial system is based on
an additive semigroup instead of a multiplicative semigroup for bulk systems.

A Ag/MgO interface is chosen as the model system for several reasons. Firstly, both parts
of the interface have simple structures, with magnesium oxide of B1 and silver of fcc crystal
structures. Secondly, interface mismatch, defined as

aMgO − aAg

(aMgO + aAg)/2
(1)

amounts to only 3%, a relatively small value, and where aAg and aMgO are the lattice constants
of bulk Ag and MgO, respectively. Finally, the interface was observed to be atomic sharp with
silver atoms being at the epitaxial positions relative to MgO(001) surface [1, 3]. For these
reasons, the Ag/MgO interface has been widely studied over the past few years [1–3, 5, 7, 8].
The mode of epitaxy growth, interface distance, wetting angle and adsorption sites for Ag
atoms on a MgO(001) surface were investigated carefully [1, 3, 5]. Ab initio computations of
the structure and adhesion of the interface were also performed by the linearized muffin tin
orbitals (LMTO) method [10, 11], local-density approximation (LDA) [12] and generalized
gradient approximation (GGA) [13]. Therefore, this work has a special advantage due to the
existence of many references for comparison.

2. Methodology

Now let us show how to extract interatomic potentials between atoms across the Ag/MgO(001)
interface from the ab initio adhesive energies. The method is built on an assumption that the
adhesive energy of an interface can be expressed as the summation over all pair interactions
between atoms across the interface. This is obviously a rough approximation because of
the complexity of chemical bonds at a real metal–ceramic interface. However, we show
that such a pair potential approach gives a reasonable description of the complex interfacial
structures to some extent. This is not really a surprise to us because, as a matter of fact, the
pair potential approach has been used widely to study complex materials phenomena [28],
including interfaces (DCM [14–17] and Kohyama–Morse [30, 31]), and many good results
were obtained.
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Figure 1. Interface structures of Ag/MgO(001). Left: Ag on Mg. Right: Ag on O. Black spheres
represent silver, light grey spheres represent magnesium and dark grey spheres represent oxygen.

There are basically two types of pair potential, �Ag−Mg for Ag–Mg and �Ag−O for Ag–O
interactions, across the Ag/MgO(001) interface. Therefore, the adhesive energy of the Ag/MgO
interface can be expressed as:

Ead =
∑

i, j

�Ag−Mg(ri, j ) +
∑

i ′, j ′
�Ag−O(ri ′, j ′) (2)

where i ′, j ′ represent the Ag–Mg (Ag–O) pairs,and r is the distance between the corresponding
Ag and Mg (Ag and O) atoms.

Adhesive energy curves for two different interfacial configurations, with Ag atoms atop
of Mg or O sites separately (see figure 1), have to be obtained from ab initio calculations
(see below for computational details) in order to extract potentials �Ag−Mg and �Ag−O. Let
x be the interfacial distance of the Ag/MgO system, and a be the lattice constants of crystals
Ag and MgO, which have been forced to have the same lattice constant in order to form
an commensurate interface. Denoting the adhesive energy curves of the two interfacial
configurations as EMg(x) for Ag atop of Mg sites and EO(x) for Ag atop of O sites (see
figure 1), they can be expressed as:

EMg(x) =
∞∑

l,l′=0

∞∑

m,n=−∞

{
�Ag−Mg

(√
(x + la + l ′a)2 + (ma)2 + (na)2

)

+ �Ag−Mg

(√
(x + la + l ′a)2 + ((m + 1/2)a)2 + ((n + 1/2)a)2

)

+ �Ag−Mg

(√
(x + la + (l ′ + 1/2)a)2 + (ma)2 + ((n + 1/2)a)2

)

+ �Ag−Mg

(√
(x + la + (l ′ + 1/2)a)2 + ((m + 1/2)a)2 + (na)2

)

+ �Ag−Mg

(√
(x + (l + 1/2)a + l ′a)2 + (ma)2 + ((n + 1/2)a)2

)

+ �Ag−Mg

(√
(x + (l + 1/2)a + l ′a)2 + ((m + 1/2)a)2 + (na)2

)
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+ �Ag−Mg

(√
(x + (l + 1/2)a + (l ′ + 1/2)a)2 + (ma)2 + (na)2

)

+ �Ag−Mg

(√
(x + (l + 1/2)a + (l ′ + 1/2)a)2 + ((m + 1/2)a)2 + ((n + 1/2)a)2

)

+ �Ag−O

(√
(x + la + l ′a)2 + (ma)2 + ((n + 1/2)a)2

)

+ �Ag−O

(√
(x + la + l ′a)2 + ((m + 1/2)a)2 + (na)2

)

+ �Ag−O

(√
(x + la + (l ′ + 1/2)a)2 + (ma)2 + (na)2

)

+ �Ag−O

(√
(x + la + (l ′ + 1/2)a)2 + ((m + 1/2)a)2 + ((n + 1/2)a)2

)

+ �Ag−O

(√
(x + (l + 1/2)a + l ′a)2 + (ma)2 + (na)2

)

+ �Ag−O

(√
(x + (l + 1/2)a + l ′a)2 + ((m + 1/2)a)2 + ((n + 1/2)a)2

)

+ �Ag−O

(√
(x + (l + 1/2)a + (l ′ + 1/2)a)2 + (ma)2 + ((n + 1/2)a)2

)

+ �Ag−O

(√
(x + (l + 1/2)a + (l ′ + 1/2)a)2 + ((m + 1/2)a)2 + (na)2

)}
(3)

EO(x) =
∞∑

l,l′=0

∞∑

m,n=−∞

{
�Ag−O

(√
(x + la + l ′a)2 + (ma)2 + (na)2

)

+ �Ag−O

(√
(x + la + l ′a)2 + ((m + 1/2)a)2 + ((n + 1/2)a)2

)

+ �Ag−O

(√
(x + la + (l ′ + 1/2)a)2 + (ma)2 + ((n + 1/2)a)2

)

+ �Ag−O

(√
(x + la + (l ′ + 1/2)a)2 + ((m + 1/2)a)2 + (na)2

)

+ �Ag−O

(√
(x + (l + 1/2)a + l ′a)2 + (ma)2 + ((n + 1/2)a)2

)

+ �Ag−O

(√
(x + (l + 1/2)a + l ′a)2 + ((m + 1/2)a)2 + (na)2

)

+ �Ag−O

(√
(x + (l + 1/2)a + (l ′ + 1/2)a)2 + (ma)2 + (na)2

)

+ �Ag−O

(√
(x + (l + 1/2)a + (l ′ + 1/2)a)2 + ((m + 1/2)a)2 + ((n + 1/2)a)2

)

+ �Ag−Mg

(√
(x + la + l ′a)2 + (ma)2 + ((n + 1/2)a)2

)

+ �Ag−Mg

(√
(x + la + l ′a)2 + ((m + 1/2)a)2 + (na)2

)

+ �Ag−Mg

(√
(x + la + (l ′ + 1/2)a)2 + (ma)2 + (na)2

)

+ �Ag−Mg

(√
(x + la + (l ′ + 1/2)a)2 + ((m + 1/2)a)2 + ((n + 1/2)a)2

)

+ �Ag−Mg

(√
(x + (l + 1/2)a + l ′a)2 + (ma)2 + (na)2

)

+ �Ag−Mg

(√
(x + (l + 1/2)a + l ′a)2 + ((m + 1/2)a)2 + ((n + 1/2)a)2

)

+ �Ag−Mg

(√
(x + (l + 1/2)a + (l ′ + 1/2)a)2 + (ma)2 + ((n + 1/2)a)2

)

+ �Ag−Mg

(√
(x + (l + 1/2)a + (l ′ + 1/2)a)2 + ((m + 1/2)a)2 + (na)2

)}
(4)
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where the variables on the right-hand side indicate the distance between Ag and O or Ag and
Mg. For example, (x + la + l ′a) is the perpendicular component to the interface plane, and√

(ma)2 + (na)2 is the corresponding parallel component.
Deriving interfacial potentials �Ag−Mg(r) and �Ag−O(r) from adhesion curves EMg(x)

and EO(x) is not an easy job, because equations (3) and (4) are complex equations with cross-
coupling items. Mathematical skill must be used and simplification has to be done for that
purpose.

By defining

E±(x) = EMg(x) ± EO(x) (5)

�±(r) = �Ag−Mg(r) ± �Ag−O(r) (6)

we have

E±(x) =
∞∑

l,l′=0

∞∑

m,n=−∞

{
�±

(√
(x + la + l ′a)2 + (ma)2 + (na)2

)

+ �±
(√

(x + la + l ′a)2 + ((m + 1/2)a)2 + ((n + 1/2)a)2
)

+ �±
(√

(x + la + (l ′ + 1/2)a)2 + (ma)2 + ((n + 1/2)a)2
)

+ �±
(√

(x + la + (l ′ + 1/2)a)2 + ((m + 1/2)a)2 + (na)2
)

+ �±
(√

(x + (l + 1/2)a + l ′a)2 + (ma)2 + ((n + 1/2)a)2
)

+ �±
(√

(x + (l + 1/2)a + l ′a)2 + ((m + 1/2)a)2 + (na)2
)

+ �±
(√

(x + (l + 1/2)a + (l ′ + 1/2)a)2 + (ma)2 + (na)2
)

+ �±
(√

(x + (l + 1/2)a + (l ′ + 1/2)a)2 + ((m + 1/2)a)2 + ((n + 1/2)a)2
)

± �±
(√

(x + la + l ′a)2 + (ma)2 + ((n + 1/2)a)2
)

± �±
(√

(x + la + l ′a)2 + ((m + 1/2)a)2 + (na)2
)

± �±
(√

(x + la + (l ′ + 1/2)a)2 + (ma)2 + (na)2
)

± �±
(√

(x + la + (l ′ + 1/2)a)2 + ((m + 1/2)a)2 + ((n + 1/2)a)2
)

± �±
(√

(x + (l + 1/2)a + l ′a)2 + (ma)2 + (na)2
)

± �±
(√

(x + (l + 1/2)a + l ′a)2 + ((m + 1/2)a)2 + ((n + 1/2)a)2
)

± �±
(√

(x + (l + 1/2)a + (l ′ + 1/2)a)2 + (ma)2 + (na)2
)

± �±
(√

(x + (l + 1/2)a + (l ′ + 1/2)a)2 + ((m + 1/2)a)2 + ((n + 1/2)a)2
)}

.

(7)

In fact, equation (7) are two independent equations equivalent to equations (3) and (4).
Once we are able to extract �±(r) from E±(x), the interfacial potentials could be obtained by:

�Ag−Mg = �+ + �−
2

�Ag−O = �+ − �−
2

.

(8)
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Obviously, the procedure for extracting �+(r) or �−(r) from E+(x) or E−(x) is the same.
Therefore, only the route for �+(r) is described in detail as follows. Also, from equation (7),
E+(x) can be expressed by �+(r) in a more compact way such that

E+(x) =
∞∑

i, j=0

∞∑

s,t=−∞
�+

(√
(x + (i + j)a/2)2 + (s2 + t2)(a/2)2

)
. (9)

For further simplification, equation (9) can be separated into two independent equations,
equations (10) and (11). The first one, with a newly defined function H+(x), is

H+(x) =
∞∑

s,t=−∞
�+

(√
x2 + (s2 + t2)(a/2)2

)
. (10)

E+(x) can then be expressed by H+(x) as:

E+(x) =
∞∑

i, j=0

H+(x + (i + j)a/2). (11)

This is the second equation. Now let us first show how to get H+(x) from equation (11) and
then �+(r) from equation (10).

From equation (11), we have:

E+(x) − E+(x + a/2) =
∞∑

j=0

H+(x + ja/2) (12)

and

E+(x + a/2) − E+(x + a) =
∞∑

j=1

H+(x + ja/2). (13)

Therefore, it is given that:

H+(x) = (E+(x) − E+(x + a/2)) − (E+(x + a/2) − E+(x + a))

= Ex(x) − 2E+(x + a/2) + E+(x + a). (14)

Equation (11) is solved.
In order to solve equation (10), we rewrite it as

H+(x) =
∞∑

n=0

h(n)�+

(√
x2 + n(a/2)2

)
(15)

where h(n) is the coefficient, which is defined as

h(n) =






1 if n = 0

4 if n = s2 or 2s2 with s �= 0

8 if n = s2 + t2 with 0 �= |s| �= |t| �= 0

0 if n �= s2 + t2.

(16)

Note that once the case of s2
1 + t2

1 = n = s2
2 + t2

2 with (s1, t1) �= (s2, t2) occurs, we have to
consider the combination, for example, s2

1 +t2
1 = n = s2

2 +t2
2 with s2

1 = t2
1 and 0 �= s2

2 �= t2
2 �= 0,

then h(n) = 4 + 8 = 12; a concrete example is (s1, t1) = (5, 5) and (s2, t2) = (1, 7).
To obtain �+(r) from H+(x) based on equation (15) is an inverse problem. Now, we

determine the inversion coefficients g(n), which satisfies a recursive relation:
n∑

m=0

h(m)g(n − m) = δn,0 (17)

δn,0 is the Kronecker function, which satisfies
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δn,0 =
{

1 n = 0

0 n � 1.
(18)

From equations (15) and (17), it is easy to prove that

∞∑

k=0

g(k)H+

(√
x2 + k(a/2)2

)
=

∞∑

k=0

g(k)

∞∑

m=0

h(m)�+

(√
x2 + k(a/2)2 + m(a/2)2

)

=
∞∑

n=0

( n∑

m=0

h(m)g(n − m)

)
�+

(√
x2 + n(a/2)2

)

=
∞∑

n=0

δn,0�+

(√
x2 + n(a/2)2

)

= �+(x). (19)

Therefore, the solution of equation (15) can be written as:

�+(x) =
∞∑

n=0

g(n)H+

(√
x2 + n(a/2)2

)
. (20)

Combining equation (14) with equation (20), �+(x) is given as

�+(x) =
∞∑

n=0

g(n)
(

E+

(√
x2 + n(a/2)2

)
− 2E+

(√
x2 + n(a/2)2 + a

)

+ E+

(√
x2 + n(a/2)2 + 2a

) )
. (21)

In a similar way, �−(x) can be derived from E−(x). The final solution of equations (3)
and (4) can be obtained from equation (8). Note that the above inversion procedure is suitable
not only for the Ag/MgO(001) interface, but also for many similar systems, such as Pd/MgO,
Cu/MgO, V/MgO and Fe/MgO. To be consistent with our early works for bulk materials [25–
29], this is called the Mobius inversion method.

Note that the inversion coefficient g(n) for the interfacial potential is given by an additive
recursive relation as

n∑

m=0

h(m)g(n − m) = δn,0

and the inversion coefficient g(n) for the bulk material potential is given by a multiplicative
recursive relation as

∑

m|n
h(m)g(n/m) = δn1;

the former corresponds to the Mobius inversion on additive semi-group, and the latter
corresponds to that on multiplicative semi-group.

3. Results

Ab initio computation is performed by CASTEP [32, 33] using a ultrasoft pseudopotential with
the generalized gradient approximation (GGA). The kinetic energy cutoff is 340 eV. The k-
points are generated using the Monkhorst–Pack scheme, with the parameters (11 11 2) [34, 35].
There are 21 k-points in the reduced Brillouin zone.
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Figure 2. Potential curves of Ag/MgO(001). The solid curve represents Ag–Mg, the dashed curve
represents Ag–O.

Table 1. Parameters of pair potentials across the Ag/MgO(001) interface.

Atom pair Potential parameters

Ag–Mg D0 = 284.5542 kcal mol−1 R0 = 1 Å y = 2.0843
a1 = 1600.6582 kcal mol−1 b1 = 6.2388 Å−1 c1 = 1.1478 Å
a2 = 7.0657 kcal mol−1 b2 = 3.6581 Å−1 c2 = 2.9842 Å
a3 = 71.1797 kcal mol−1 b3 = 4.3778 Å−1 c3 = 1.8999 Å

Ag–O D0 = 5596.5601 kcal mol−1 R0 = 1 Å y = 2.1383
a1 = −5678.4394 kcal mol−1 b1 = 2.8384 Å−1 c1 = 1.0839 Å
a2 = −634.8887 kcal mol−1 b2 = 2.1121 Å−1 c2 = 1.9 Å
a3 = −7.4067 kcal mol−1 b3 = 2.5757 Å−1 c3 = 3.5539 Å

In order to obtain the ab initio adhesive energies, the interface distance range (figure 1)
varies from 1.5 to 5.0 Å. The converted interfacial potentials are then given through the method
discussed in section 2, and fit into the modified Rahman–Stillinger–Lembergpotential (RSL2):

E = D0ey(1− R
R0

) +
a1

1 + eb1(R−c1)
+

a1

1 + eb2(R−c2)
+

a3

1 + eb3(R−c3)
. (22)

The calculated parameters are presented in table 1, and potential curves are shown in
figure 2.

As the potentials have been obtained, a countercheck is necessary. The ab initio adhesive
energy curves are compared with the ones generated from potentials by equations (3) and (4),
as shown in figure 3. The good agreement shows that our inversion is successful to this extent.

Now we consider the applicability of the above interfacial potentials to some other
structures of Ag/MgO(001) interface. As shown in figure 4, Ag atoms are located in the middle
of the Mg–Mg bond, the middle of the Mg–O bond, and at a quarter of the Mg–Mg bond. The
energy curves generated by ab initio calculation and above interfacial potentials are presented
in figure 5. We see that most of the ab initio curves can be exactly reproduced by potentials.
Only some difference is found when Ag is located in the middle of the Mg–Mg bond. This
reveals that our potentials can reproduce the energy surface of Ag/MgO(001) to a great extent.
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Figure 3. Adhesive energy curves from ab initio calculation and summation of potentials for
Ag/MgO(001). Circles represent the ab initio results, and curves represent the summation of
potentials.

Figure 4. Interface structures of Ag/MgO(001). Left: Ag in the middle of the Mg–Mg bond.
Middle: Ag in the middle of the Mg–O bond. Right: Ag at a quarter of the Mg–Mg bond. Black
spheres represent silver, light grey spheres represent magnesium and dark grey spheres represent
oxygen.

Next, we investigate the transferability of these interfacial potentials to interfaces
Ag/MgO(110) and Ag/MgO(111). The corresponding interface structures are shown in
figures 6 and 7, and the energy curves are presented in figures 8 and 9.

From the figures, the ab initio adhesive energy curves of the Ag/MgO(110) and
Ag/MgO(111) interfaces with lowest energy structures can be reproduced by these pair
potentials derived from Ag/MgO(001), but the adhesive energy curves with highest energy
structures cannot be reproduced, especially for the polarized Ag/MgO(111) interface with
high energy, as in figures 9(a) and (b). This is because of the transformation of the electronic
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Figure 5. Adhesive energy curves from ab initio calculation and summation of potentials for
Ag/MgO(001). Squares represent the ab initio results, and curves represent the summation of
potentials.

Figure 6. Interface structures of Ag/MgO(110). Left: Ag on O. Right: Ag on Mg. Black spheres
represent silver, light grey spheres represent magnesium and dark grey spheres represent oxygen.

structures, as shown in figure 10. The interfaces of different Miller indices contain different
charge distribution, and then produce different interfacial potentials. Fortunately, the interfacial
structures with low energies can be reproduced with our potentials.
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Figure 7. Interface structures of Ag/MgO(111). Left: Ag on the O terminated MgO(111) surface.
Right: Ag on the Mg terminated MgO(111) surface. Black spheres represent silver, light grey
spheres represent magnesium and dark grey spheres represent oxygen.

Figure 8. Adhesive energy curves from ab initio calculation and summation of potentials for
Ag/MgO(110). Triangles represent the ab initio results, and curves represent the summation of
potentials.
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Figure 9. Adhesive energy curves from ab initio calculation and summation of potentials for
Ag/MgO(111). (a) Mg terminated interface. (b) O terminated interface. Squares represent the
ab initio results, and curves represent the summation of potentials.

Figure 10. Logarithm contour of the charge density for the Ag/MgO interface. Left: Ag/MgO(001).
Middle: Ag/MgO(110). Right: Ag/MgO(111).

(This figure is in colour only in the electronic version)

4. Conclusion

In this work, a Mobius inversion method to obtain interfacial pair potentials from ab initio
energy curves has been introduced. There are several advantages with this new general method.
First, a concise formula is given, second, the original ab initio energy curves can be exactly
reproduced for most low energy interfacial states. Through this inversion procedure, the
atomistic simulation can represent ab initio computation to a large extent. Note that the present
Mobius inversion method is also applicable to metal/metal and metal/semiconductor interfaces.
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There are also some limits for our work. First, we find that the potentials obtained
from the Ag/MgO(001) interface cannot reproduce the energy curves of Ag/MgO(110) and
Ag/MgO(111) in high energy states. This reveals that the transferability of these potentials is
limited. Considering this question, complexity behind pair potentials is needed, such as the
three-body potentials across the interface. Second, some ignored features in this work such as
charge transfer should be considered in our future study. Also, the detail of the convergence
and numerical stability of the inversion procedure will be presented in another work.
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